
[Bist, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[774-776]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Study of CFG and System calls for Computer Virus Detection
Ankur Singh Bist

Quantum Global Campus, Roorkee, India
ankur1990bist@gmail.com

Abstract
Computer viruses are big threat to computer world; researchers doing work in this area have made various

efforts in the direction of classification and detection methods of these viruses. Graph mining, system call
arrangement and CFG analysis are some latest research activities in this field. The computability theory and the semi
computable functions are quite important in our context of analyzing malicious activities. A mathematical model
like random access stored program machine with the association of attached background is used by Ferenc Leitold
while explaining modeling of viruses in his paper. Computer viruses like polymorphic viruses and metamorphic
viruses use more efficient techniques for their evolution so it is required to use strong models for understanding their
evolution and then apply detection followed by the process of removal. Code Emulation is one of the strongest ways
to analyze computer viruses but the anti-emulation activities made by virus designers are also active. This paper
involves the study of control flow graphs and system calls used for detection of computer viruses in better manner.

Keywords: Control Flow Graph, Malicious Codes.

Introduction
 There are various processes that have been used

in the direction of classification of computer viruses from
normal files that will finally lead to worm detection.
Machine learning techniques are widely used in this
direction. As statistics says that the attacks of malicious
codes are increasing day by day so there is requirement
of strong techniques that can be used for their detection.
Malicious code designers use lot of techniques that are
difficult to analyse and detect. The static methods also
seems not to work in the case where every time there are
rapid dynamicity from attacker side so now a days main
focus is going on towards the methods that are dynamic
and are able to detect zero day computer viruses.

The rise in the malicious threats like computer viruses
activities are required to be handled and observed
strongly to make certain defence that can stand as a
saviour of security domain. Other types of malware are:

1. Worms
2. Trojan horse
3. Botnets
4. Adware
5. Spyware

Figure1. Assembly file of virus

The mutating behaviour of metamorphic viruses is due to
their adoption of code obfuscation techniques.
 a) Dead code insertion
 b) Variable Renaming
 c) Break and join transformation
 d) Expression reshaping
 e) Statement reordering

System Call and Control Flow Graph

In computer science the process by which
program requests a service from an operating system
kernel is called system call. This may include hardware
related services like accessing the hard disk, creating and
executing new processes, and communicating with
integral kernel services e.g. scheduling. An important
interface between a process and the operating system is
introduced by system calls. Implementing system calls

[Bist, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[774-776]

requires a control transfer which involves some specific
kind of features from architecture. A complex method to
implement this is to utilize a software interrupt or trap.
Interrupts gives control to the operating system kernel so
software simply require to set up some register with the
system call number needed, and make the execution of
software interrupt.

This is the only technique provided for
many RISC processors, but CISC architectures such
asx86 support some other methods. One example is
SYSCALL/SYSRET, SYSENTER/SYSEXIT. The two
mechanisms were independently designed by AMD and
Intel, respectively, but in essence do the same thing.
These are "fast" control transfer instructions that are
designed to quickly transfer control to the OS for a
system call without the overhead of an
interrupt. Linux 2.5 began using this on the x86, where
available; formerly it used the INT instruction, where the
system call number was placed in the
EAX register before interrupt 0x80 was executed.

An older x86 mechanism is called a call
gate and is a way for a program to literally call a kernel
function directly using a safe control transfer mechanism
the OS sets up in advance. This approach has been
unpopular, presumably due to the requirement of a far
call which uses x86 memory segmentation and the
resulting lack of portability it cause, and existence of the
faster instructions.

For IA-64 architecture, EPC (Enter Privileged
Mode) instruction is used. The first eight system call
arguments are passed in registers, and the rest are passed
on the stack.

In the IBM System/360 mainframe family,
a Supervisor Call instruction implements a system call
for legacy facilities; the Program Call instruction is used
for newer facilities. In particular, PC is used when the
caller might be in SRB mode.
There are five major categories of system call:

1. Procedure of process control
• loading
• Execution
• Create process (for example, fork on

Unix-like systems or Nt-Create Process
in the Windows NT Native API)

• Process termination
• Get/Set process attributes
• Wait for time, wait event, signal event
• Allocate, free memory

2. Procedure of file management
• Create file, delete file
• Open, close
• Read, write, reposition
• Get/set file attributes

3. Procedure of device management
• Request device, release device
• Read, write, reposition
• Get/set device attributes
• Logically attach or detach devices

4. Procedure of information maintenance
• Get/set time or date
• Get/set system data
• Get/set process, file, or device

attributes
5. Procedure of communication

• Create, delete communication
connection

• Send, receive messages
• Transfer status information
• Attach or detach remote devices

Figure 2:- system call procedure

In computer science control flow graph is defined as a
presentation, using graph notation, of all paths that might
be traversed through a program during its execution.
In a control flow graph each node in the graph represents
a basic block, i.e. a straight-line piece of code without
any jumps or jump targets; jump targets start a block, and
jumps end a block. Directed edges give information of
jumps in the control flow. There are, in most
presentations, two specially designated blocks:
 Entry block: - By which control enters into the flow
graph.
 Exit block: - By which all control flow leaves.
Control flow graph is widely used in compiler
optimizations and static analysis tools. The research
involves system call and CFG analysis considers the
system call and CFG pattern of normal files and
malicious files. The main purpose of researchers remains

[Bist, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[774-776]

in finding the difference their system call or CFG pattern.
The analyzed difference becomes an important measure
for classification. In this way the computer virus
detection problem reduces into mathematical problem of
finding similarity in specific terms like isomorphism in
graphs.

Figure 3: Control flow graph

Conclusion

This paper discusses about basic outline of
computer viruses and their detection by analyzing system
call and control flow graphs. The methods discussed are
being used for solving different problems in this domain.
This study will be helpful for researchers working in the
field of computer virology.

References

[1] www.wikipedia.com.
[2] Christian Wressnegger,”Beatrix: A Malicious

CodeAnalysis Framework”.
[3] S. Papadimtrou and J. Sun. Disco: distributed

co clustering with map reduce in proceedings of
ICDM, 2008.

[4] Farrokh Mamaghani ,Evaluation and selection
of an antivirus and content filtering software
Department of Management, St John Fisher
College, Rochester, New York, USA)

